Actualízate a Pro
Continuar al sitio
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluciones
Calculadora de integrales (antiderivadas)
Calculadora de derivadas
Calculadora de Álgebra
Calculadora de matrices
Más...
Gráficos
Gráfico de líneas
Gráfica exponencial
Gráfica cuadrática
Gráfico seno
Más...
Calculadoras
Calculadora de IMC
Calculadora de interés compuesto
Calculadora de porcentaje
Calculadora de aceleración
Más...
Geometría
Calculadora del teorema de pitágoras
Calculadora del área del círculo
Calculadora de triángulo isósceles
Calculadora de Triángulos
Más...
Herramientas
Cuaderno
Grupos
Hojas de referencia
Hojas de trabajo
Guías de estudio
Practica
Verificar solución
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Actualizar
Problemas populares
Temas
Pre-Álgebra
Álgebra
Problemas de palabras
Functions & Graphing
Geometría
Trigonometría
Precálculo
Cálculo
Estadística
Problemas populares de Cálculo
(dy)/(dt)=t^2
\frac{dy}{dt}=t^{2}
derivative y=(csc(x^2))/(7x-cos^2(x))
derivative\:y=\frac{\csc(x^{2})}{7x-\cos^{2}(x)}
laplacetransformación 2t^2e^t
laplacetransform\:2t^{2}e^{t}
(d^3)/(dx^3)(e^{x^2})
\frac{d^{3}}{dx^{3}}(e^{x^{2}})
integral de x/((1-x^2)^{3/2)}
\int\:\frac{x}{(1-x^{2})^{\frac{3}{2}}}dx
(\partial)/(\partial y)(x/(sqrt(x^2+y^2)))
\frac{\partial\:}{\partial\:y}(\frac{x}{\sqrt{x^{2}+y^{2}}})
integral de 1200 a 1210 de 0.1x
\int\:_{1200}^{1210}0.1xdx
límite cuando x tiende a 0 de x^3*ln(x)
\lim\:_{x\to\:0}(x^{3}\cdot\:\ln(x))
(\partial)/(\partial z)(3)
\frac{\partial\:}{\partial\:z}(3)
derivative sin(sqrt(x^2))
derivative\:\sin(\sqrt{x^{2}})
derivative f(s)=8^{sqrt(2s-1)}
derivative\:f(s)=8^{\sqrt{2s-1}}
límite cuando x tiende a infinity de-5/x
\lim\:_{x\to\:\infty\:}(-\frac{5}{x})
derivada de (x-7/(sqrt(x)-\sqrt{7)})
\frac{d}{dx}(\frac{x-7}{\sqrt{x}-\sqrt{7}})
derivada de {g}(h,x(h(x)))
\frac{d}{dx}({g}(h,x)(h(x)))
integral de 0 a 2 de xe^{4x}
\int\:_{0}^{2}xe^{4x}dx
y^'=y^3,y(0)=1
y^{\prime\:}=y^{3},y(0)=1
(dy)/(dt)+1/2 y=17sin(2t)
\frac{dy}{dt}+\frac{1}{2}y=17\sin(2t)
integral de cos(sqrt(2x))
\int\:\cos(\sqrt{2x})dx
integral de (tan(x))^4
\int\:(\tan(x))^{4}dx
derivada de (x^2-5x+4/(|x-1|))
\frac{d}{dx}(\frac{x^{2}-5x+4}{\left|x-1\right|})
derivada de x^{1-a}
\frac{d}{dx}(x^{1-a})
(\partial)/(\partial x)(e^{y/x}*y)
\frac{\partial\:}{\partial\:x}(e^{\frac{y}{x}}\cdot\:y)
límite cuando x tiende a 1 de (e^{x-1}-1)/(ln^2(x))
\lim\:_{x\to\:1}(\frac{e^{x-1}-1}{\ln^{2}(x)})
área x^2-4x+3,3+4x-x^2
area\:x^{2}-4x+3,3+4x-x^{2}
integral de-1 a 1 de (x^2-1)
\int\:_{-1}^{1}(x^{2}-1)dx
(\partial)/(\partial z)(sin(x+2y+3z))
\frac{\partial\:}{\partial\:z}(\sin(x+2y+3z))
derivative f(x)=6x^2(x-9)
derivative\:f(x)=6x^{2}(x-9)
(\partial)/(\partial x)(2/(x^3))
\frac{\partial\:}{\partial\:x}(\frac{2}{x^{3}})
integral de (sqrt(4x^2-9))/x
\int\:\frac{\sqrt{4x^{2}-9}}{x}dx
límite cuando x tiende a 2 de (x^2-4)/(2-x)
\lim\:_{x\to\:2}(\frac{x^{2}-4}{2-x})
integral de e^x+9x
\int\:e^{x}+9xdx
derivada de (x-a^2)
\frac{d}{dx}((x-a)^{2})
derivative sin^2(x)
derivative\:\sin^{2}(x)
derivada de sin^2(xcot(5x))
\frac{d}{dx}(\sin^{2}(x)\cot(5x))
inversalaplace (4s-36)/(s^2-8s+15)
inverselaplace\:\frac{4s-36}{s^{2}-8s+15}
pendiente (0.5)(1)
slope\:(0.5)(1)
d/(du)(ln(u))
\frac{d}{du}(\ln(u))
(y^2-2xy)dx+x^2dy=0
(y^{2}-2xy)dx+x^{2}dy=0
derivada de e^{sqrt(x^2-2x)}
\frac{d}{dx}(e^{\sqrt{x^{2}-2x}})
inversalaplace 1/(s^2(s+3))
inverselaplace\:\frac{1}{s^{2}(s+3)}
inversalaplace 1/((s^2+4s+5))
inverselaplace\:\frac{1}{(s^{2}+4s+5)}
serie de n=0 a infinity de 1/(4^n)
\sum\:_{n=0}^{\infty\:}\frac{1}{4^{n}}
derivative f(x)=(\sqrt[3]{x})/(x-6)
derivative\:f(x)=\frac{\sqrt[3]{x}}{x-6}
límite cuando x tiende a 3 de f(x)(x-1)
\lim\:_{x\to\:3}(f(x)(x-1))
(\partial)/(\partial y)(x-y)
\frac{\partial\:}{\partial\:y}(x-y)
límite cuando x tiende a 0 de ((11^x-1))/x
\lim\:_{x\to\:0}(\frac{(11^{x}-1)}{x})
integral de 5/(cos(x)-1)
\int\:\frac{5}{\cos(x)-1}dx
integral de ycos(x/y)
\int\:y\cos(\frac{x}{y})dx
derivative f(x)=2(sin^3(x))
derivative\:f(x)=2(\sin^{3}(x))
integral de (sin(2x))/(14+cos^2(x))
\int\:\frac{\sin(2x)}{14+\cos^{2}(x)}dx
y^'+2/x y=y^2,y(1)=3
y^{\prime\:}+\frac{2}{x}y=y^{2},y(1)=3
derivada de a/(2y)
\frac{d}{dx}(\frac{a}{2y})
t^3y^'+4t^2y=0
t^{3}y^{\prime\:}+4t^{2}y=0
integral de (3sin^3(x))/(cos(x))
\int\:\frac{3\sin^{3}(x)}{\cos(x)}dx
(\partial)/(\partial x)(2x^2+3y^2+z^2)
\frac{\partial\:}{\partial\:x}(2x^{2}+3y^{2}+z^{2})
derivada de (2x+1/(x-3))
\frac{d}{dx}(\frac{2x+1}{x-3})
derivada de sin(ln(3x^2+x))
\frac{d}{dx}(\sin(\ln(3x^{2}+x)))
derivada de-(10/(10-x))
\frac{d}{dx}(-\frac{10}{10-x})
integral de 1/(x*sqrt(1-x^2))
\int\:\frac{1}{x\cdot\:\sqrt{1-x^{2}}}dx
derivada de axe^{2x}
\frac{d}{dx}(axe^{2x})
tangent f(x)=x^3+x^2+(6/x),\at x=1
tangent\:f(x)=x^{3}+x^{2}+(\frac{6}{x}),\at\:x=1
tangent y=(x-4)^2,\at x=5
tangent\:y=(x-4)^{2},\at\:x=5
(dy)/(dt)=-2y+10
\frac{dy}{dt}=-2y+10
integral de x^3(x^4-1)^5
\int\:x^{3}(x^{4}-1)^{5}dx
tangent y=4e^xcos(x),(0,4)
tangent\:y=4e^{x}\cos(x),(0,4)
(\partial)/(\partial x)(x*e^y+ln(x)*y)
\frac{\partial\:}{\partial\:x}(x\cdot\:e^{y}+\ln(x)\cdot\:y)
derivative v/(v+c/v)
derivative\:\frac{v}{v+\frac{c}{v}}
integral de 0 a 1 de e^{-5x^2}
\int\:_{0}^{1}e^{-5x^{2}}dx
límite cuando x tiende a infinity de e^{1/2-1/(x^2)}-1
\lim\:_{x\to\:\infty\:}(e^{\frac{1}{2}-\frac{1}{x^{2}}}-1)
serie de n=1 a infinity de 1(1/6)^n
\sum\:_{n=1}^{\infty\:}1(\frac{1}{6})^{n}
serie de n=1 a infinity de n^n(x-3)^n
\sum\:_{n=1}^{\infty\:}n^{n}(x-3)^{n}
integral de 0 a pi/2 de (cos(θ))/(sqrt(1+sin(θ)))
\int\:_{0}^{\frac{π}{2}}\frac{\cos(θ)}{\sqrt{1+\sin(θ)}}dθ
serie de n=0 a infinity de 2((-2)/3)^n
\sum\:_{n=0}^{\infty\:}2(\frac{-2}{3})^{n}
(dy)/(dx)=e^{-(x+y)}
\frac{dy}{dx}=e^{-(x+y)}
integral de e^{-x+2}
\int\:e^{-x+2}dx
área y=4(x+1),y=5(x+1),x=5
area\:y=4(x+1),y=5(x+1),x=5
derivative f(x)=9sin(x)cos(x)
derivative\:f(x)=9\sin(x)\cos(x)
integral de sin(x)cos(2x)
\int\:\sin(x)\cos(2x)dx
taylor cos(x^3)
taylor\:\cos(x^{3})
integral de 1 a infinity de 5e^{-5x}
\int\:_{1}^{\infty\:}5e^{-5x}dx
integral de e^{-x^2}
\int\:e^{-x^{2}}dx
integral de ((2z))/(\sqrt[3]{z^2+1)}
\int\:\frac{(2z)}{\sqrt[3]{z^{2}+1}}dz
derivada de e^{x^2-x+1}
\frac{d}{dx}(e^{x^{2}-x+1})
derivada de x^4+4x^3-2x^2-12x
\frac{d}{dx}(x^{4}+4x^{3}-2x^{2}-12x)
derivada de 10^{-2x}
\frac{d}{dx}(10^{-2x})
integral de (x^2)/(sqrt(2x-1))
\int\:\frac{x^{2}}{\sqrt{2x-1}}dx
inversalaplace 8/((9s^2+12s+4)(s))
inverselaplace\:\frac{8}{(9s^{2}+12s+4)(s)}
integral de x*e^{x^2}
\int\:x\cdot\:e^{x^{2}}dx
(d^2x)/(dt^2)+9x=-sin(3t)
\frac{d^{2}x}{dt^{2}}+9x=-\sin(3t)
(\partial}{\partial x}(ln(\frac{2xy)/z))
\frac{\partial\:}{\partial\:x}(\ln(\frac{2xy}{z}))
integral de (5x)/(3x^{1/3)}
\int\:\frac{5x}{3x^{\frac{1}{3}}}dx
integral de-1 a 1 de (\sqrt[3]{t-2})
\int\:_{-1}^{1}(\sqrt[3]{t-2})dt
tangent y=1.1x+e^x,(0,1)
tangent\:y=1.1x+e^{x},(0,1)
volumenabout y=0,y=x^2,y=4x-x^2,[0,2]
volumeabout\:y=0,y=x^{2},y=4x-x^{2},[0,2]
(1+cos(t))y^'=(1+e^{-y})sin(t),y(0)=0
(1+\cos(t))y^{\prime\:}=(1+e^{-y})\sin(t),y(0)=0
derivative (x^2+5)(8-x)
derivative\:(x^{2}+5)(8-x)
integral de (2x)/(1+4x^2)
\int\:\frac{2x}{1+4x^{2}}dx
derivative 6/(x^3)
derivative\:\frac{6}{x^{3}}
integral de (3x^2)/(4sqrt(5-x^3))
\int\:\frac{3x^{2}}{4\sqrt{5-x^{3}}}dx
tangent f(x)=3x^2-3x,\at x=3
tangent\:f(x)=3x^{2}-3x,\at\:x=3
1
..
161
162
163
164
165
..
2459