Solución
Solución
+1
Grados
Pasos de solución
Re-escribir usando identidades trigonométricas
Utilizar la identidad hiperbólica:
Utilizar la identidad hiperbólica:
Multiplicar ambos lados por
Simplificar
Aplicar las leyes de los exponentes
Aplicar las leyes de los exponentes:
Re escribir la ecuación con
Resolver
Simplificar
Simplificar
Poner los parentesis
Aplicar las reglas de los signos
Multiplicar ambos lados por
Multiplicar ambos lados por
Simplificar
Simplificar
Aplicar las leyes de los exponentes:
Sumar:
Simplificar
Multiplicar fracciones:
Eliminar los terminos comunes:
Desarrollar
Expandir
Poner los parentesis utilizando:
Simplificar
Aplicar las leyes de los exponentes:
Sumar:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar los numeros:
Simplificar
Agrupar términos semejantes
Sumar elementos similares:
Sumar:
Resolver
Mover al lado izquierdo
Restar de ambos lados
Simplificar
Escribir en la forma binómica
Re-escribir la ecuación con y
Resolver
Resolver con la fórmula general para ecuaciones de segundo grado:
Formula general para ecuaciones de segundo grado:
Para
Aplicar las leyes de los exponentes: si es par
Multiplicar los numeros:
Restar:
Descomponer el número en factores primos:
Aplicar las leyes de los exponentes:
Separar las soluciones
Aplicar la regla
Sumar:
Multiplicar los numeros:
Dividir:
Aplicar la regla
Restar:
Multiplicar los numeros:
Aplicar la regla
Las soluciones a la ecuación de segundo grado son:
Sustituir hacia atrás la resolver para
Resolver
Para las soluciones son
Resolver
Para las soluciones son
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Las soluciones son
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):
Tomar el(los) denominador(es) de y comparar con cero
Resolver
Aplicar la regla
Los siguientes puntos no están definidos
Combinar los puntos no definidos con las soluciones:
Sustituir hacia atrás la resolver para
Resolver
Aplicar las leyes de los exponentes
Aplicar las leyes de los exponentes:
Si , entonces
Aplicar las propiedades de los logaritmos:
Aplicar las propiedades de los logaritmos:
Resolver Sin solución para
no puede ser cero o negativo para
Resolver
Aplicar las leyes de los exponentes
Si , entonces
Aplicar las propiedades de los logaritmos:
Simplificar
Aplicar las propiedades de los logaritmos:
Resolver Sin solución para
no puede ser cero o negativo para