Solución
Solución
+1
radianes
Pasos de solución
Re-escribir usando identidades trigonométricas:
Usar la siguiente identidad:
Utilizar la siguiente propiedad:
Utilizar la periodicidad de :
Simplificar:
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Multiplicar los numeros:
Sumar elementos similares:
Re-escribir usando identidades trigonométricas:
Utilizar la identidad trigonométrica básica:
Simplificar:
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Sumar elementos similares:
Re-escribir usando identidades trigonométricas:
Demostrar que:
Utilizar el siguiente producto para la identidad de suma de ángulos:
Demostrar que:
Utilizar la identidad trigonométrica del ángulo doble:
Dividir ambos lados entre
Usar la siguiente identidad:
Dividir ambos lados entre
Dividir ambos lados entre
Sustituir
Demostrar que:
Utilizar la regla de factorización:
Simplificar
Demostrar que:
Utilizar la identidad trigonométrica del ángulo doble:
Dividir ambos lados entre
Usar la siguiente identidad:
Dividir ambos lados entre
Dividir ambos lados entre
Sustituir
Sustituir
Simplificar
Sumar a ambos lados
Simplificar
Obtener la raíz cuadrada de ambos lados
no puede ser negativano puede ser negativa
Añadir las siguientes ecuaciones
Simplificar
Restar de ambos lados
Simplificar
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Expandir
Poner los parentesis
Aplicar las reglas de los signos
Re-escribir usando identidades trigonométricas
Utilizar la identidad pitagórica:
Simplificar
Expandir
Poner los parentesis utilizando:
Aplicar las reglas de los signos
Multiplicar los numeros:
Simplificar
Sumar elementos similares:
Agrupar términos semejantes
Restar:
Usando el método de sustitución
Sea:
Mover al lado derecho
Sumar a ambos lados
Simplificar
Mover al lado derecho
Sumar a ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Dividir:
Simplificar
Aplicar la regla
Para las soluciones son
Aplicar la siguiente propiedad de los radicales: asumiendo que
Descomposición en factores primos de
divida por
divida por
es un número primo, por lo tanto, no es posible factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sumar elementos similares:
Multiplicar fracciones:
Eliminar los terminos comunes:
Sumar:
Simplificar
Aplicar la siguiente propiedad de los radicales: asumiendo que
Descomposición en factores primos de
divida por
divida por
es un número primo, por lo tanto, no es posible factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sumar elementos similares:
Multiplicar fracciones:
Eliminar los terminos comunes:
Sumar:
Sustituir en la ecuación
Aplicar propiedades trigonométricas inversas
Soluciones generales para
Aplicar propiedades trigonométricas inversas
Soluciones generales para
Combinar toda las soluciones
Mostrar soluciones en forma decimal