解答
tan(x)sin2(x)=sin(2x)
解答
x=2πn,x=π+2πn,x=−0.95531…+πn,x=0.95531…+πn
+1
度数
x=0∘+360∘n,x=180∘+360∘n,x=−54.73561…∘+180∘n,x=54.73561…∘+180∘n求解步骤
tan(x)sin2(x)=sin(2x)
两边减去 sin(2x)sin2(x)tan(x)−sin(2x)=0
使用三角恒等式改写
−sin(2x)+sin2(x)tan(x)
使用倍角公式: sin(2x)=2sin(x)cos(x)=−2sin(x)cos(x)+sin2(x)tan(x)
sin2(x)tan(x)−2cos(x)sin(x)=0
分解 sin2(x)tan(x)−2cos(x)sin(x):sin(x)(sin(x)tan(x)−2cos(x))
sin2(x)tan(x)−2cos(x)sin(x)
使用指数法则: ab+c=abacsin2(x)=sin(x)sin(x)=sin(x)sin(x)tan(x)−2cos(x)sin(x)
因式分解出通项 sin(x)=sin(x)(sin(x)tan(x)−2cos(x))
sin(x)(sin(x)tan(x)−2cos(x))=0
分别求解每个部分sin(x)=0orsin(x)tan(x)−2cos(x)=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
sin(x)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
解 x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)tan(x)−2cos(x)=0:x=arctan(−2)+πn,x=arctan(2)+πn
sin(x)tan(x)−2cos(x)=0
用 sin, cos 表示
−2cos(x)+sin(x)tan(x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=−2cos(x)+sin(x)cos(x)sin(x)
化简 −2cos(x)+sin(x)cos(x)sin(x):cos(x)−2cos2(x)+sin2(x)
−2cos(x)+sin(x)cos(x)sin(x)
sin(x)cos(x)sin(x)=cos(x)sin2(x)
sin(x)cos(x)sin(x)
分式相乘: a⋅cb=ca⋅b=cos(x)sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
使用指数法则: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
数字相加:1+1=2=sin2(x)
=cos(x)sin2(x)
=−2cos(x)+cos(x)sin2(x)
将项转换为分式: 2cos(x)=cos(x)2cos(x)cos(x)=−cos(x)2cos(x)cos(x)+cos(x)sin2(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)−2cos(x)cos(x)+sin2(x)
−2cos(x)cos(x)+sin2(x)=−2cos2(x)+sin2(x)
−2cos(x)cos(x)+sin2(x)
2cos(x)cos(x)=2cos2(x)
2cos(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2cos1+1(x)
数字相加:1+1=2=2cos2(x)
=−2cos2(x)+sin2(x)
=cos(x)−2cos2(x)+sin2(x)
=cos(x)−2cos2(x)+sin2(x)
cos(x)sin2(x)−2cos2(x)=0
g(x)f(x)=0⇒f(x)=0sin2(x)−2cos2(x)=0
分解 sin2(x)−2cos2(x):(sin(x)+2cos(x))(sin(x)−2cos(x))
sin2(x)−2cos2(x)
将 sin2(x)−2cos2(x) 改写为 sin2(x)−(2cos(x))2
sin2(x)−2cos2(x)
使用根式运算法则: a=(a)22=(2)2=sin2(x)−(2)2cos2(x)
使用指数法则: ambm=(ab)m(2)2cos2(x)=(2cos(x))2=sin2(x)−(2cos(x))2
=sin2(x)−(2cos(x))2
使用平方差公式: x2−y2=(x+y)(x−y)sin2(x)−(2cos(x))2=(sin(x)+2cos(x))(sin(x)−2cos(x))=(sin(x)+2cos(x))(sin(x)−2cos(x))
(sin(x)+2cos(x))(sin(x)−2cos(x))=0
分别求解每个部分sin(x)+2cos(x)=0orsin(x)−2cos(x)=0
sin(x)+2cos(x)=0:x=arctan(−2)+πn
sin(x)+2cos(x)=0
使用三角恒等式改写
sin(x)+2cos(x)=0
在两边除以 cos(x),cos(x)=0cos(x)sin(x)+2cos(x)=cos(x)0
化简cos(x)sin(x)+2=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)tan(x)+2=0
tan(x)+2=0
将 2到右边
tan(x)+2=0
两边减去 2tan(x)+2−2=0−2
化简tan(x)=−2
tan(x)=−2
使用反三角函数性质
tan(x)=−2
tan(x)=−2的通解tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−2)+πn
x=arctan(−2)+πn
sin(x)−2cos(x)=0:x=arctan(2)+πn
sin(x)−2cos(x)=0
使用三角恒等式改写
sin(x)−2cos(x)=0
在两边除以 cos(x),cos(x)=0cos(x)sin(x)−2cos(x)=cos(x)0
化简cos(x)sin(x)−2=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)tan(x)−2=0
tan(x)−2=0
将 2到右边
tan(x)−2=0
两边加上 2tan(x)−2+2=0+2
化简tan(x)=2
tan(x)=2
使用反三角函数性质
tan(x)=2
tan(x)=2的通解tan(x)=a⇒x=arctan(a)+πnx=arctan(2)+πn
x=arctan(2)+πn
合并所有解x=arctan(−2)+πn,x=arctan(2)+πn
合并所有解x=2πn,x=π+2πn,x=arctan(−2)+πn,x=arctan(2)+πn
以小数形式表示解x=2πn,x=π+2πn,x=−0.95531…+πn,x=0.95531…+πn