Solución
Solución
Pasos de solución
Re-escribir usando identidades trigonométricas
Utilizar la identidad pitagórica:
Simplificar
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Simplificar
Sumar elementos similares:
Agrupar términos semejantes
Sumar:
Usando el método de sustitución
Sea:
Escribir en la forma binómica
Re-escribir la ecuación con y
Resolver
Resolver con la fórmula general para ecuaciones de segundo grado:
Formula general para ecuaciones de segundo grado:
Para
Simplificar
Multiplicar los numeros:
Aplicar las propiedades de los numeros imaginarios:
Sumar/restar lo siguiente:
Descomposición en factores primos de
divida por
divida por
son números primos, por lo tanto, no se pueden factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Separar las soluciones
Multiplicar los numeros:
Factorizar
Reescribir como
Factorizar el termino común
Dividir:
Multiplicar los numeros:
Factorizar
Reescribir como
Factorizar el termino común
Dividir:
Negar
Las soluciones a la ecuación de segundo grado son:
Sustituir hacia atrás la resolver para
Resolver
Sustituir
Desarrollar
Aplicar la formula del binomio al cuadrado:
Aplicar las leyes de los exponentes:
Aplicar las propiedades de los numeros imaginarios:
Simplificar
Reescribir en la forma binómica:
Agrupar la parte real y la parte imaginaria del número complejo
Un conjunto de números complejos solo pueden ser iguales si su partes real e imaginaria son iguales.Reescribir como un sistema de ecuaciones:
Despejar para
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Sustituir las soluciones en
Para , sustituir con
Para , sustituir con
Resolver
Simplificar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar ambos lados por
Multiplicar ambos lados por
Simplificar
Simplificar
Multiplicar fracciones:
Eliminar los terminos comunes:
Eliminar los terminos comunes:
Simplificar
Aplicar las leyes de los exponentes:
Sumar:
Simplificar
Multiplicar los numeros:
Resolver
Mover al lado izquierdo
Sumar a ambos lados
Simplificar
Escribir en la forma binómica
Re-escribir la ecuación con y
Resolver
Resolver con la fórmula general para ecuaciones de segundo grado:
Formula general para ecuaciones de segundo grado:
Para
Aplicar la regla
Multiplicar los numeros:
Sumar:
Descomposición en factores primos de
divida por
divida por
divida por
divida por
son números primos, por lo tanto, no se pueden factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Simplificar
Separar las soluciones
Quitar los parentesis:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Quitar los parentesis:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Las soluciones a la ecuación de segundo grado son:
Sustituir hacia atrás la resolver para
Resolver Sin solución para
no puede ser negativo para
Resolver
Para las soluciones son
Las soluciones son
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):
Tomar el(los) denominador(es) de y comparar con cero
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Los siguientes puntos no están definidos
Combinar los puntos no definidos con las soluciones:
Sustituir las soluciones en
Para , sustituir con
Para , sustituir con
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Dividir:
Eliminar los terminos comunes:
Simplificar
Aplicar la siguiente propiedad de los radicales: asumiendo que
Multiplicar
Multiplicar fracciones:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Para , sustituir con
Para , sustituir con
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Quitar los parentesis:
Aplicar las propiedades de las fracciones:
Dividir:
Eliminar los terminos comunes:
Simplificar
Quitar los parentesis:
Aplicar las propiedades de las fracciones:
Aplicar la siguiente propiedad de los radicales: asumiendo que
Multiplicar
Multiplicar fracciones:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar la solución Verdadero
Sustituir
Simplificar
Por lo tanto, las soluciones finales para son
Sustituir en la ecuación
Resolver
Sustituir
Desarrollar
Aplicar la formula del binomio al cuadrado:
Aplicar las leyes de los exponentes:
Aplicar las propiedades de los numeros imaginarios:
Simplificar
Reescribir en la forma binómica:
Agrupar la parte real y la parte imaginaria del número complejo
Un conjunto de números complejos solo pueden ser iguales si su partes real e imaginaria son iguales.Reescribir como un sistema de ecuaciones:
Despejar para
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Sustituir las soluciones en
Para , sustituir con
Para , sustituir con
Resolver
Simplificar
Aplicar las leyes de los exponentes: si es par
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar ambos lados por
Multiplicar ambos lados por
Simplificar
Simplificar
Multiplicar fracciones:
Eliminar los terminos comunes:
Eliminar los terminos comunes:
Simplificar
Aplicar las leyes de los exponentes:
Sumar:
Simplificar
Multiplicar los numeros:
Resolver
Mover al lado izquierdo
Sumar a ambos lados
Simplificar
Escribir en la forma binómica
Re-escribir la ecuación con y
Resolver
Resolver con la fórmula general para ecuaciones de segundo grado:
Formula general para ecuaciones de segundo grado:
Para
Aplicar la regla
Multiplicar los numeros:
Sumar:
Descomposición en factores primos de
divida por
divida por
divida por
divida por
son números primos, por lo tanto, no se pueden factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Simplificar
Separar las soluciones
Quitar los parentesis:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Quitar los parentesis:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Las soluciones a la ecuación de segundo grado son:
Sustituir hacia atrás la resolver para
Resolver Sin solución para
no puede ser negativo para
Resolver
Para las soluciones son
Las soluciones son
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):
Tomar el(los) denominador(es) de y comparar con cero
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Los siguientes puntos no están definidos
Combinar los puntos no definidos con las soluciones:
Sustituir las soluciones en
Para , sustituir con
Para , sustituir con
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Dividir:
Eliminar los terminos comunes:
Simplificar
Aplicar las propiedades de las fracciones:
Aplicar la siguiente propiedad de los radicales: asumiendo que
Multiplicar
Multiplicar fracciones:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Para , sustituir con
Para , sustituir con
Resolver
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Quitar los parentesis:
Aplicar las propiedades de las fracciones:
Dividir:
Eliminar los terminos comunes:
Simplificar
Quitar los parentesis:
Aplicar las propiedades de las fracciones:
Aplicar la siguiente propiedad de los radicales: asumiendo que
Multiplicar
Multiplicar fracciones:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar las soluciones sustituyéndolas en
Quitar las que no concuerden con la ecuación.
Verificar la solución Verdadero
Sustituir
Simplificar
Verificar la solución Verdadero
Sustituir
Simplificar
Por lo tanto, las soluciones finales para son
Sustituir en la ecuación
Las soluciones son
Sustituir en la ecuación
Sin solución
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Multiplicar los numeros:
Aplicar las leyes de los exponentes:
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Poner los parentesis utilizando:
Multiplicar los numeros:
Multiplicar por el conjugado
Aplicar la siguiente regla para binomios al cuadrado:
Simplificar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar los numeros:
Restar:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Reescribir en la forma binómica:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Quitar los parentesis:
Cancelar
Factorizar
Factorizar
Aplicar las leyes de los exponentes:
Cancelar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Combinar los exponentes similares:
Agrupar la parte real y la parte imaginaria del número complejo
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sin solución
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Multiplicar los numeros:
Aplicar las leyes de los exponentes:
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Poner los parentesis utilizando:
Multiplicar los numeros:
Multiplicar por el conjugado
Aplicar la siguiente regla para binomios al cuadrado:
Simplificar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar los numeros:
Restar:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Reescribir en la forma binómica:
Aplicar la regla
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Factorizar
Aplicar las leyes de los exponentes:
Cancelar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Combinar los exponentes similares:
Agrupar la parte real y la parte imaginaria del número complejo
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sin solución
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Multiplicar los numeros:
Aplicar las leyes de los exponentes:
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Poner los parentesis utilizando:
Multiplicar los numeros:
Multiplicar por el conjugado
Aplicar la siguiente regla para binomios al cuadrado:
Simplificar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar los numeros:
Restar:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Reescribir en la forma binómica:
Aplicar la regla
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Factorizar
Aplicar las leyes de los exponentes:
Cancelar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Combinar los exponentes similares:
Agrupar la parte real y la parte imaginaria del número complejo
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sin solución
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Multiplicar los numeros:
Aplicar las leyes de los exponentes:
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Poner los parentesis utilizando:
Multiplicar los numeros:
Multiplicar por el conjugado
Aplicar la siguiente regla para binomios al cuadrado:
Simplificar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Multiplicar los numeros:
Restar:
Aplicar las propiedades de las fracciones:
Cancelar
Factorizar
Reescribir como
Factorizar el termino común
Eliminar los terminos comunes:
Reescribir en la forma binómica:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Aplicar las leyes de los exponentes:
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Aplicar las propiedades de las fracciones:
Quitar los parentesis:
Cancelar
Factorizar
Factorizar
Aplicar las leyes de los exponentes:
Cancelar
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Restar:
Aplicar las leyes de los exponentes:
Combinar los exponentes similares:
Agrupar la parte real y la parte imaginaria del número complejo
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Aplicar las leyes de los exponentes:
Multiplicar fracciones:
Eliminar los terminos comunes:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Combinar toda las soluciones