Solução
Solução
+1
Graus
Passos da solução
Subtrair de ambos os lados
Reeecreva usando identidades trigonométricas
Utilizar a identidade trigonométrica pitagórica:
Simplificar
Expandir
Colocar os parênteses utilizando:
Multiplicar os números:
Simplificar
Agrupar termos semelhantes
Somar/subtrair:
Usando o método de substituição
Sea:
Escrever na forma padrão
Fatorar
Utilizar o teorema das raízes racionais
Os divisores de Os divisores de
Portanto, verificar os seguintes números racionais:
é a raiz da expressão, portanto, fatorar
Dividir
Dividir os coeficientes dos termos de maior grau do numerador
e o divisor
Multiplicar por Subtrair de para obter um novo resto
Portanto
Dividir
Dividir os coeficientes dos termos de maior grau do numerador
e o divisor
Multiplicar por Subtrair de para obter um novo resto
Portanto
Dividir
Dividir os coeficientes dos termos de maior grau do numerador
e o divisor
Multiplicar por Subtrair de para obter um novo resto
Portanto
Dividir
Dividir os coeficientes dos termos de maior grau do numerador
e o divisor
Multiplicar por Subtrair de para obter um novo resto
Portanto
Dividir
Dividir os coeficientes dos termos de maior grau do numerador
e o divisor
Multiplicar por Subtrair de para obter um novo resto
Portanto
Usando o princípio do fator zero: Se então ou
Resolver
Mova para o lado direito
Adicionar a ambos os lados
Simplificar
Resolver
Encontrar uma solução para utilizando o método de Newton-Raphson:
Definição de método de Newton-Raphson
Encontrar
Aplicar a regra da soma/diferença:
Aplicar a regra da potência:
Simplificar
Aplicar a regra da potência:
Simplificar
Aplicar a regra da potência:
Simplificar
Aplicar a regra da derivação:
Derivada de uma constante:
Simplificar
Seja Calcular até que
Aplicar a divisão longa
Encontrar uma solução para utilizando o método de Newton-Raphson:
Definição de método de Newton-Raphson
Encontrar
Aplicar a regra da soma/diferença:
Aplicar a regra da potência:
Simplificar
Retirar a constante:
Aplicar a regra da potência:
Simplificar
Retirar a constante:
Aplicar a regra da derivação:
Simplificar
Derivada de uma constante:
Simplificar
Seja Calcular até que
Aplicar a divisão longa
Encontrar uma solução para utilizando o método de Newton-Raphson:Sem solução para
Definição de método de Newton-Raphson
Encontrar
Aplicar a regra da soma/diferença:
Aplicar a regra da potência:
Simplificar
Retirar a constante:
Aplicar a regra da derivação:
Simplificar
Derivada de uma constante:
Simplificar
Seja Calcular até que
Não se pode encontrar solução
As soluções são
As soluções são
Substituir na equação
Soluções gerais para
tabela de periodicidade com ciclo de :
Aplique as propriedades trigonométricas inversas
Soluções gerais para
Aplique as propriedades trigonométricas inversas
Soluções gerais para
Combinar toda as soluções
Mostrar soluções na forma decimal