Solución
Solución
+1
Grados
Pasos de solución
Re-escribir usando identidades trigonométricas
Utilizar la identidad hiperbólica:
Utilizar la identidad hiperbólica:
Aplicar las leyes de los exponentes
Aplicar las leyes de los exponentes:
Re escribir la ecuación con
Resolver
Simplificar
Multiplicar por el mínimo común múltiplo
Encontrar el mínimo común múltiplo de
Mínimo común múltiplo (MCM)
Calcular una expresión que este compuesta de factores que aparezcan tanto en o
Multiplicar por el mínimo común múltiplo=
Simplificar
Simplificar
Multiplicar los numeros:
Simplificar
Multiplicar fracciones:
Eliminar los terminos comunes:
Eliminar los terminos comunes:
Simplificar
Multiplicar fracciones:
Eliminar los terminos comunes:
Resolver
Desarrollar
Expandir
Poner los parentesis utilizando:
Simplificar
Aplicar las leyes de los exponentes:
Sumar:
Multiplicar los numeros:
Desarrollar
Aplicar la formula del binomio al cuadrado:
Simplificar
Aplicar la regla
Aplicar las leyes de los exponentes:
Multiplicar los numeros:
Multiplicar los numeros:
Aplicar la siguiente regla de productos notables
Simplificar
Multiplicar los numeros:
Multiplicar los numeros:
Intercambiar lados
Mover al lado izquierdo
Sumar a ambos lados
Simplificar
Mover al lado izquierdo
Restar de ambos lados
Simplificar
Mover al lado izquierdo
Restar de ambos lados
Simplificar
Factorizar
Utilizar el teorema de la raíz racional
Los divisores de Los divisores de
Por lo tanto, verificar los siguientes numeros racionales:
es la raíz de la expresión, por lo tanto, factorizar
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Factorizar
Utilizar el teorema de la raíz racional
Los divisores de Los divisores de
Por lo tanto, verificar los siguientes numeros racionales:
es la raíz de la expresión, por lo tanto, factorizar
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Dividir
Dividir los coeficientes de los términos de mayor grado del numerador
y el divisor
Multiplicar por Substraer de para obtener un nuevo residuo
Por lo tanto
Utilizando el teorema de factor cero: si entonces o
Resolver
Mover al lado derecho
Sumar a ambos lados
Simplificar
Resolver
Mover al lado derecho
Restar de ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Resolver
Resolver con la fórmula general para ecuaciones de segundo grado:
Formula general para ecuaciones de segundo grado:
Para
Aplicar la regla
Aplicar las leyes de los exponentes: si es par
Multiplicar los numeros:
Sumar:
Descomposición en factores primos de
divida por
divida por
es un número primo, por lo tanto, no es posible factorizar mas
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Aplicar las leyes de los exponentes:
Separar las soluciones
Aplicar la regla
Multiplicar los numeros:
Factorizar
Reescribir como
Factorizar el termino común
Dividir:
Aplicar la regla
Multiplicar los numeros:
Factorizar
Reescribir como
Factorizar el termino común
Dividir:
Las soluciones a la ecuación de segundo grado son:
Las soluciones son
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):
Tomar el(los) denominador(es) de y comparar con cero
Tomar el(los) denominador(es) de y comparar con cero
Los siguientes puntos no están definidos
Combinar los puntos no definidos con las soluciones:
Sustituir hacia atrás la resolver para
Resolver
Aplicar las leyes de los exponentes
Si , entonces
Aplicar las propiedades de los logaritmos:
Resolver Sin solución para
no puede ser cero o negativo para
Resolver
Aplicar las leyes de los exponentes
Si , entonces
Aplicar las propiedades de los logaritmos:
Resolver Sin solución para
no puede ser cero o negativo para