Solución
Solución
+1
Notación decimal
Pasos de solución
Simplificar:
Multiplicar fracciones:
Multiplicar los numeros:
Simplificar en una fracción:
Mínimo común múltiplo de
Mínimo común múltiplo (MCM)
Mínimo común múltiplo de
Mínimo común múltiplo (MCM)
Descomposición en factores primos de
es un número primo, por lo tanto, no es posible factorizar
Descomposición en factores primos de
divida por
divida por
Multiplicar cada factor el mayor número de veces que ocurra en cualquier o
Multiplicar los numeros:
Calcular una expresión que este compuesta de factores que aparezcan tanto en o
Reescribir las fracciones basandose en el mínimo común denominador
Multiplicar cada numerador por la misma cantidad necesaria para multiplicar el denominador correspondiente y convertirlo en el mínimo común denominador
Para multiplicar el denominador y el numerador por
Para multiplicar el denominador y el numerador por
Ya que los denominadores son iguales, combinar las fracciones:
Multiplicar fracciones:
Eliminar los terminos comunes:
Eliminar los terminos comunes:
Reescribir como
Utilizar la periodicidad de :
Re-escribir usando identidades trigonométricas:
Re-escribir usando identidades trigonométricas:
Utilizar la identidad trigonométrica básica:
Simplificar:
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Sumar elementos similares:
Re-escribir usando identidades trigonométricas:
Demostrar que:
Utilizar el siguiente producto para la identidad de suma de ángulos:
Demostrar que:
Utilizar la identidad trigonométrica del ángulo doble:
Dividir ambos lados entre
Usar la siguiente identidad:
Dividir ambos lados entre
Dividir ambos lados entre
Sustituir
Demostrar que:
Utilizar la regla de factorización:
Simplificar
Demostrar que:
Utilizar la identidad trigonométrica del ángulo doble:
Dividir ambos lados entre
Usar la siguiente identidad:
Dividir ambos lados entre
Dividir ambos lados entre
Sustituir
Sustituir
Simplificar
Sumar a ambos lados
Simplificar
Obtener la raíz cuadrada de ambos lados
no puede ser negativano puede ser negativa
Añadir las siguientes ecuaciones
Simplificar
Elevar al cuadrado ambos lados
Usar la siguiente identidad:
Sustituir
Simplificar
Obtener la raíz cuadrada de ambos lados
no puede ser negativa
Simplificar
Aplicar la siguiente propiedad de los radicales: asumiendo que
Aplicar las propiedades de las fracciones:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Sumar elementos similares:
Multiplicar fracciones:
Eliminar los terminos comunes:
Sumar:
Simplificar
Multiplicar
Multiplicar fracciones: