Actualízate a Pro
Continuar al sitio
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluciones
Calculadora de integrales (antiderivadas)
Calculadora de derivadas
Calculadora de Álgebra
Calculadora de matrices
Más...
Gráficos
Gráfico de líneas
Gráfica exponencial
Gráfica cuadrática
Gráfico seno
Más...
Calculadoras
Calculadora de IMC
Calculadora de interés compuesto
Calculadora de porcentaje
Calculadora de aceleración
Más...
Geometría
Calculadora del teorema de pitágoras
Calculadora del área del círculo
Calculadora de triángulo isósceles
Calculadora de Triángulos
Más...
Herramientas
Cuaderno
Grupos
Hojas de referencia
Hojas de trabajo
Guías de estudio
Practica
Verificar solución
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Actualizar
Problemas populares
Temas
Pre-Álgebra
Álgebra
Problemas de palabras
Functions & Graphing
Geometría
Trigonometría
Precálculo
Cálculo
Estadística
Problemas populares de Geometry
vértices (x^2)/9+(y^2)/(25)=1
vertices\:\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
9(x-1)^2-16(y+2)^2=144
9(x-1)^{2}-16(y+2)^{2}=144
vértices 9x^2+4y^2+36x-24y+36=0
vertices\:9x^{2}+4y^{2}+36x-24y+36=0
vértices f(x)=3x^2-18x+23
vertices\:f(x)=3x^{2}-18x+23
x^2+y^2<= 25
x^{2}+y^{2}\le\:25
2x^2+y^2=2
2x^{2}+y^{2}=2
(x-3)^2+y^2=4
(x-3)^{2}+y^{2}=4
directriz y=-4x^2
directrix\:y=-4x^{2}
vértices (x^2}{25}-\frac{y^2)/9 =1
vertices\:\frac{x^{2}}{25}-\frac{y^{2}}{9}=1
x^2-2x-4y+9=0
x^{2}-2x-4y+9=0
4x^2+25y^2=100
4x^{2}+25y^{2}=100
directriz x^2=4y
directrix\:x^{2}=4y
x^2=-16y
x^{2}=-16y
y-x>-x^2-1
y-x>-x^{2}-1
((y+1)^2)/4-(x-5)^2=4
\frac{(y+1)^{2}}{4}-(x-5)^{2}=4
focos x= 1/8 y^2
foci\:x=\frac{1}{8}y^{2}
x^2-4y^2-2x+16y=20
x^{2}-4y^{2}-2x+16y=20
asíntotas 9x^2-4y^2-72x=0
asymptotes\:9x^{2}-4y^{2}-72x=0
focos y=2x^2
foci\:y=2x^{2}
(x^2)/7+(y^2)/(16)=1
\frac{x^{2}}{7}+\frac{y^{2}}{16}=1
x^2=y+2
x^{2}=y+2
directriz x^2=24y
directrix\:x^{2}=24y
2x^2+16y=0
2x^{2}+16y=0
radio x^2+y^2=25
radius\:x^{2}+y^{2}=25
9x^2-54x+25y^2-200y=-256
9x^{2}-54x+25y^{2}-200y=-256
y^2=2x
y^{2}=2x
vérticeparabola y=x^2-24x-12
vertexparabola\:y=x^{2}-24x-12
focos (x^2}{16}-\frac{y^2)/9 =1
foci\:\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
x^2-12x+16y+68=0
x^{2}-12x+16y+68=0
10x^2+4y^2+2x+16y=144
10x^{2}+4y^{2}+2x+16y=144
y^2=-36x
y^{2}=-36x
x^2=4y
x^{2}=4y
vértices f(x)=x^2-9
vertices\:f(x)=x^{2}-9
y^2=x-3
y^{2}=x-3
((x-5)^2}{25}+\frac{(y+3)^2)/9 =1
\frac{(x-5)^{2}}{25}+\frac{(y+3)^{2}}{9}=1
focos 16y^2-25x^2=400
foci\:16y^{2}-25x^{2}=400
excentricidad 16x^2+25y^2=400
eccentricity\:16x^{2}+25y^{2}=400
x^2+y^2=25
x^{2}+y^{2}=25
(x^2)/(64)+(y^2)/(36)=1
\frac{x^{2}}{64}+\frac{y^{2}}{36}=1
x^2+y^2=6
x^{2}+y^{2}=6
x^2=16y
x^{2}=16y
(x^2}{16}+\frac{y^2)/9 =1
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
-9x^2+4y^2-36x-16y-164=0
-9x^{2}+4y^{2}-36x-16y-164=0
directriz 1/4 (y+3)=(x-2)^2
directrix\:\frac{1}{4}(y+3)=(x-2)^{2}
x=-2y^2
x=-2y^{2}
x^2+y^2=36
x^{2}+y^{2}=36
focos (x^2)/7+(y^2)/(16)=1
foci\:\frac{x^{2}}{7}+\frac{y^{2}}{16}=1
y^2= 7/2 x
y^{2}=\frac{7}{2}x
directriz x^2=-8y
directrix\:x^{2}=-8y
directriz y^2=3x
directrix\:y^{2}=3x
(x^2)/4-y^2=1
\frac{x^{2}}{4}-y^{2}=1
focos (x^2}{25}+\frac{y^2)/4 =1
foci\:\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
vértices y=-(x^2)/(10)+(9x)/(10)+11/5
vertices\:y=-\frac{x^{2}}{10}+\frac{9x}{10}+\frac{11}{5}
2y^2-12y-x+5=0
2y^{2}-12y-x+5=0
excentricidad 9x^2+9y^2+18x-18y+14=0
eccentricity\:9x^{2}+9y^{2}+18x-18y+14=0
focos x^2=8y
foci\:x^{2}=8y
y^2+4x=7
y^{2}+4x=7
vértices (x^2}{16}-\frac{y^2)/9 =1
vertices\:\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
focos 9x^2-16y^2=144
foci\:9x^{2}-16y^{2}=144
asíntotas (y^2}{16}-\frac{x^2)/9 =1
asymptotes\:\frac{y^{2}}{16}-\frac{x^{2}}{9}=1
x=2y^2
x=2y^{2}
vértices f(x)=x^2-6x+1
vertices\:f(x)=x^{2}-6x+1
eje x^2+(y^2)/(64)=1
axis\:x^{2}+\frac{y^{2}}{64}=1
x^2-y=0
x^{2}-y=0
y^2=-4x
y^{2}=-4x
vértices 9x^2-4y^2-90x-32y=-305
vertices\:9x^{2}-4y^{2}-90x-32y=-305
vértices f(x)=3x^2-6x+4
vertices\:f(x)=3x^{2}-6x+4
vértices 16x^2-9y^2=144
vertices\:16x^{2}-9y^{2}=144
y^2=8x
y^{2}=8x
focos ((x-2)^2)/(36)+((y+1)^2)/(25)=1
foci\:\frac{(x-2)^{2}}{36}+\frac{(y+1)^{2}}{25}=1
asíntotas (x^2)/9-(y^2)/(16)=1
asymptotes\:\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
(x^2)/9+(y^2)/(25)=1
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
focos 9x^2-y^2-36x-6y+18=0
foci\:9x^{2}-y^{2}-36x-6y+18=0
focos (x^2)/(25)+(y^2)/(49)=1
foci\:\frac{x^{2}}{25}+\frac{y^{2}}{49}=1
área (x^2)/(a^2)+(y^2)/(b^2)=1
area\:\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
(x^2}{36}+\frac{y^2)/4 =1
\frac{x^{2}}{36}+\frac{y^{2}}{4}=1
vértices f(x)=x^2-10x+24
vertices\:f(x)=x^{2}-10x+24
vértices (x^2}{16}+\frac{y^2)/4 =1
vertices\:\frac{x^{2}}{16}+\frac{y^{2}}{4}=1
vértices f(x)=x^2-8x+12
vertices\:f(x)=x^{2}-8x+12
asíntotas (y^2)/(36)-(x^2)/(64)=1
asymptotes\:\frac{y^{2}}{36}-\frac{x^{2}}{64}=1
vértices ((x-3)^2)/5+((y-1)^2)/(15)=1
vertices\:\frac{(x-3)^{2}}{5}+\frac{(y-1)^{2}}{15}=1
3x^2-y^2=11
3x^{2}-y^{2}=11
9x^2+16y^2=144
9x^{2}+16y^{2}=144
x^2+y^2=10
x^{2}+y^{2}=10
focos x^2+(y^2)/(25)=1
foci\:x^{2}+\frac{y^{2}}{25}=1
(x+2)^2+((y+4)^2)/(1/4)=1
(x+2)^{2}+\frac{(y+4)^{2}}{\frac{1}{4}}=1
(x^2}{16}-\frac{y^2)/9 =1
\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
asíntotas 9y^2-4x^2=36
asymptotes\:9y^{2}-4x^{2}=36
x^2-y^2>= 1
x^{2}-y^{2}\ge\:1
directriz x^2=-28y
directrix\:x^{2}=-28y
vértices f(x)=-x^2+4x-3
vertices\:f(x)=-x^{2}+4x-3
3y+4x=-2x^2-14
3y+4x=-2x^{2}-14
focos x^2=20y
foci\:x^{2}=20y
(x^2)/(169)+(y^2)/(25)=1
\frac{x^{2}}{169}+\frac{y^{2}}{25}=1
asíntotas (y^2)/9-(x^2)/4 =1
asymptotes\:\frac{y^{2}}{9}-\frac{x^{2}}{4}=1
2x^2-6x+2y^2+2y=45
2x^{2}-6x+2y^{2}+2y=45
focos x^2-y^2=6
foci\:x^{2}-y^{2}=6
vértices f(x)=x^2+4x+1
vertices\:f(x)=x^{2}+4x+1
vértices (x^2)/9-(y^2)/(25)=1
vertices\:\frac{x^{2}}{9}-\frac{y^{2}}{25}=1
directriz x-2= 1/8 (y+1)^2
directrix\:x-2=\frac{1}{8}(y+1)^{2}
1
2
3
4
5
6
7
..
257